Phil 2310 Fall 2010

Assignment 5: This homework is due by the beginning of class on Fri, Oct 1st.

Part I. In each of the following cases, determine whether the sequent is valid by either giving an invalidating assignment, or by giving some argument that there is none.

1. $(P \rightarrow Q) \land (Q \rightarrow \neg P), R \rightarrow \neg P \models R \rightarrow (P \land Q)$ 2. $(Q \rightarrow R) \rightarrow S, (U \lor R) \rightarrow Q \models (U \lor Q) \rightarrow S$ 3. $(((Q \rightarrow R) \rightarrow R) \rightarrow P) \rightarrow P, P \rightarrow (Q \land \neg Q) \models Q \lor R$ 4. $P \rightarrow \neg P, \neg R \rightarrow R \models P \land (\neg R \land S)$ 5. $(P \rightarrow Q) \rightarrow R, (R \land S) \rightarrow U \models (\neg U \land \neg Q) \rightarrow \neg S$ 6. $\neg (P \rightarrow Q), R \land (Q \lor S) \models (R \land U) \lor (P \land \neg U)$

Part II. Assume that it is possible to construct a proof in \mathcal{F}_T from the premises P₁, P₂, P₃ to the conclusion Conc. Which of the following MUST be true? (The correct answer may be any number of these).

1) Conc is a logical consequence of $\{P_1, P_2, P_3\}$ 2) \neg Conc is not a logical consequence of {P₁, P₂, P₃} 3) $\{P_1, P_2, P_3\}$ is a consistent set 4) $\{P_1, P_2, P_3\}$ is an inconsistent set 5) $\{P_1, P_2, P_3, Conc\}$ is an inconsistent set 6) {P₁, P₂, P₃, \neg Conc} is an inconsistent set 7) {P₂, P₃, \neg Conc} is an inconsistent set 8) {P₂, P₃, \neg Conc} is a consistent set 9) { \neg P₁, P₂, P₃, Conc} is an inconsistent set 10) { \neg P₁, \neg P₂, \neg P₃, Conc} is a consistent set 11) $\neg P_1$ is a logical consequence of $\{P_2, P_3, Conc\}$ 12) $\neg P_1$ is a logical consequence of $\{P_2, P_3, \neg Conc\}$ 13) $\neg P_3$ is provable in \mathcal{F}_T from $\{P_1, P_2, \neg Conc\}$ 14) P₃ is provable in \mathcal{F}_T from {P₁, P₂, Conc} 14) $P_1 \rightarrow \text{Conc is provable in } \mathcal{F}_T \text{ from } \{P_2, P_3\}$ 15) $P_1 \Leftrightarrow$ Conc is provable in \mathcal{F}_T from $\{P_2, P_3\}$ 16) $\neg \text{Conc} \rightarrow \neg P_3$ is provable in \mathcal{F}_T from $\{P_1, P_2\}$ 17) $(P_1 \land P_2 \land P_3) \rightarrow \text{Conc is provable in } \mathcal{F}_T \text{ from } \{ \}$ 18) $(\neg P_1 \land \neg P_2 \land \neg P_3) \rightarrow \neg$ Conc is not provable in \mathcal{F}_T from { } 19) $P_1 \rightarrow (P_2 \rightarrow (P_3 \rightarrow Conc))$ is a logical truth 20) $\neg \text{Conc} \rightarrow (\neg P_1 \land \neg P_2 \land \neg P_3)$ is a logical truth

Part III. Which of the above MUST be false?